Robotics, Data science and Healthcare technologies

Medical Robotics and Interventional Imaging

From Robotics, Data science and Healthcare technologies
Revision as of 11:33, 26 September 2022 by Jvappou (talk | contribs) (Created page with "The Medical Robotics and Interventional Imaging Research axis encompasses activities of the team in the field of robotic assistance to minimally invasive medical and surgical...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

The Medical Robotics and Interventional Imaging Research axis encompasses activities of the team in the field of robotic assistance to minimally invasive medical and surgical procedures and around methodological and clinical developments in interventional radiology.

Robot-aided Cementoplasty in interventional radiology

The RDH team has an ongoing collaboration with the Department of Interventional Imaging of Strasbourg University Hospital (HUS) on bone consolidation by cementoplasty. Cementoplasty consists in injecting orthopedic cement into osteoporotic or metastasized bone, under fluoroscopic guidance. The main rationale for robotizing this procedure is to deport the physician from the X-ray source, protecting him/her from repeated, harmful X-ray exposure. Interventional radiology, multiphysics modeling and simulation, as well as robotic gesture assistance are involved in this interdisciplinary research. The study of cementoplasty has structured a team of researchers and practitioners and led to numerous Master projects (>8 between 2011 and 2022) and two PhD theses. As a result of the SpineTronic project (2013-2016, SATT Conectus), a robotic system was developed allowing the practitioner to remotely control the cement viscosity during the injection. The BoneTronic project (Labex Cami BoneTronic 2020-22) addresses percutaneous cementoplasty for large volumes of PMMA such as in the pelvis. We established the specifications of a manual injector designed to handle large volumes of cement while delaying its polymerization. As part of the BoneTronic project, this device was developed along with low-cost pelvic phantoms for the cementoplasty procedure, especially for junior practitioners. Through this work, the team has developed numerous avenues for translational research, particularly in the field of pelvic oncology with bone consolidation by combining screws and cementoplasty. This work has led to the development of various devices or phantoms and to the publication of several scientific articles.

Main contacts:

  • Bernard Bayle, Bernard.bayle(at)unistra.fr
  • Julien Garnon, julien.garnon(at)chru-strasbourg.fr
  • Laurence Meylheuc, laurence.meylheuc(at)insa-strasbourg.fr

Manufacturing process, new devices and robots for Interventional procedures

The RDH develops long-term research activities in the field of assistance to percutaneous procedures, as illustrated above by the projects on robot-assisted cementoplasty. Researchers of the RDH team have used their expertise in the fields of material science, 3D-printing techniques and actuation to develop new solutions for image-guided percutaneous procedures. In particular, the SPIRITS project (Smart Printed Interactive Robots for Interventional Therapy and Surgery) combined the existing complementary expertise of 5 partners and 8 associate partners in the Upper Rhine Region. Thanks to advanced manufacturing strategies, novel actuation solutions for the control of surgical needles were developed. Pneumatic and hydraulic actuators have been created, in particular by using the freedom of shape of 3D-printing to introduce innovative piston designs. In the end, several demonstrators using passive or active hydraulic technologies have been set up to validate the capacity to produce robotic components and systems, which are compatible with the stringent medical environment. Several prototypes have been produced and tested preclinically. Compatibility with X-Ray and MRI devices was established, and the impact of robotics in terms of procedure duration and X-ray exposure was also analyzed in collaboration with the University Hospital of Strasbourg. Feedback from radiologists was collected throughout the duration of the project. The results are very encouraging in terms of safety improvement and ease of use [REF]. Following the SPIRITS project, researchers of the RDH team, in collaboration with the Instant-Lab of EPFL, have developed a passive needle with variable stiffness for interventional radiology (ARC project, SATT Conectus). The stiffness change of the ARC needle is achieved by means of microfabricated flexure joints that can be locked and unlocked. When inserting the ARC needle, the bevel of the needle will favor a greater or lesser bending direction of the needle depending on the chosen stiffness. The possibility of easily bending the needle by several degrees allows accessing targets that are difficult to reach, by avoiding obstacles or considering new entry points. The ARC needle also allows the correction of the insertion trajectory without complete withdrawal of the needle, which limits the risks of infection and reduces the intervention time. Finally, it allows access to several targets in the same area for tissue harvesting or any other localized treatment.

ARC project Website: https://arc-needle.carrd.co/

Main contacts:

Pierre Renaud, pierre.renaud(at)unistra.fr Lennart Rubbert, lennart.rubbert(at)insa-strasbourg.fr Laurent Barbé, barbe(at)unistra.fr