

Medical Robotics

2014-2015

Gestes Médicaux et Chirurgicaux Assistés par Ordinateur (GMCAO)

Course instructor:

Michel de Mathelin

Teaching staff:

Florent Nageotte, Stéphane Nicolau, Hyewon Seo

Course description

- Chapter I: Definitions and state-of-the-art
- Chapter II: Registration
- Chapter III: Visual servoing
- Chapter IV: Virtual reality
- Chapter IV: Augmented reality

Bibliography

- IARP Workshop on Medical Robotics, Hidden Valley, may 2004: http://www.nsf.gov/eng/roboticsorg/IARPMedicalRoboticsWorkshopReport.htm
- CARS Workshop on Medical Robotics, Berlin, june 2005
- 6th European summer school in surgical robotics, Montpellier, september 2013: http://www.lirmm.fr/manifs/UEE/accueil.htm
- IEEE Transactions on Robotics & Automation, special issue on medical robotics, vol 19(5), octobre 2003.
- Proceedings of the IEEE, special issue on medical robotics, vol 94(9) september 2006.
- International Journal of Robotics Research, special issue on Biorob 2006, vol 26(11-12), 2007.
- IEEE Transactions on Biomedical Engineering, special issue on medical robotics, 2008.
- IEEE Engineering in Medecine and Biology Magazine, special issue on MRI Robotics, vol 27(3), 2008
- IEEE Robotics and Automation Magazine, Surgical and Interventional Robotics Tutorial, Vol 15, (2), pp 122-130, (3), pp. 94-102, (4), pp. 84-93.
- International Journal of Robotics Research, special issue on Medical Robotics, vol 28, (9) and (10), 2009.
- Medical Robotics Ed. J. Troccaz, Springer 2012.
- International Conferences: ICRA, IROS, MICCAI, BIOROB, CARS, EMBC

I.1 Definitions (1)

Medical Robotics:

I. Surgical and medical assistance systems:

Robotics to assist doctors and surgeons – This course

II. Assistive technologies and rehabilitation robotics:

Robotics to assist people (elderly, disabled, injured, ...)

- Prothetic devices, artificial limbs, orthotic devices, ...
- Active implants, functional electro-stimulation, ...
- Robotic moving and manipulation aids, smart living spaces, ...
- Rehabilitation robotics for therapy and training

I.1 Definitions (2)

 Surgical and medical assistance systems - Computer Aided Surgery (CAS) (GMCAO):

Computer and robotic assistance to the planning and execution of medical acts using pre-operative and intra-operative imaging and signal monitoring

I.1 Definitions (3)

Complete CAS system:

Pre-operative and intra-operative Information

Videoscopy, endoscopy, CT, MRI, echography, PET, ... Monitoring,

Optical and magnetic 3D localization, ...

Pre-operative and intraoperative information processing

Medical image processing,
3D visualization,
Planification,
Patient specific Simulation,
Registration,
Biomechanical and
geometric models, atlas, ...

Intra-operative intervention

Augmented reality, navigation Surgical and medical robots, Co-bots, ...

I.1 Definitions (4)

Possible classification of medical robotic systems:

1. Actuation of the mobilities:

- Passive
- Semi-active
- Active

2. Medical applications:

- Orthopedics
- Minimally invasive surgery (MIS)
- Neurosurgery
- Interventional radiology
- Radiotherapy
- Odontology and maxillo-facial surgery
- •

I.1 Definitions (5)

3. Robotic tasks: This course

- Registration: localization of the instrument with respect to the patient with reference to the pre-operative planning and intra-operative imaging.
- **Positioning**: 3D positioning of instruments with respect to the patient
- Trajectory tracking: tracking with the instrument of a planned trajectory with respect to the patient
- Comanipulation: manual manipulation an instrument constraint in position, velocity or force, by a robotic device
- **Telemanipulation**: telemanipulation from a distance of an un instrument
- **Exploration**: exploration of a partially unknown environment
- **Simulation:** execution of the previous tasks in a virtual environment

I.2 State of the art (1)

End of the eighties:

First generation of robots
 Transformed industrial robots

Nineties:

Second generation of robots :
 Robots especially designed to improved surgical gestures

Today :

– Third generation of robots :

Robots especially designed to performed surgical or medical acts impossible otherwise

I.2 State of the art (2)

A. End of the eighties:

- First generation medical robot :
 - Transformed industrial robots
 - Development of navigation application

Advantages of industrial robots:

- Accuracy: positionning of the instruments < mm
- Repeatability: high repeatability of a specific task
- Planification : execution of planned trajectories and tasks
- Strength: gravity compensation of heavy loads
- Hostile environment

Main medical applications:

- Orthopedics
- Neurosurgery
- Radiology and radiotherapy

I.2 State of the art (3)

Orthopedics

 The robot is used to precisely cut, slice, drill bones for implants (knee, hip, ...)

– Commercial products:

• ROBODOC (ISS):

Development with IBM (1986)
 Transformation of an industrial robot of the electronic industry

CASPAR (Maquet):

Transformation of a Staübli robot

I.2 State of the art (4)

Neurosurgery:

 The robot is used to precisely position a probe, a needle or a lens with respect to the brain

Commercial products:

- Neuromate (ISS):
 - Developement in Grenoble in 1985

NeuroMate[™]

I.2 State of the art (5)

PathFinder (Prosurgics, UK):

Surgiscope (Elektra, ISIS, France):

Delta robot

I.2 State of the art (6)

Radiotherapy and radiology :

- The robot is used to move around the patient a X-ray or a beam producing machine
- The patient is on a robotized bed moved in front of the beam

Commercial products :

Cyberknife (Acurray)

Radiotherapy (Gamma rays)

I.2 State of the art (7)

Radiology: Artis Zeego (Siemens)

Protontherapy :PPS (Patient Positioning System)

I.2 State of the art (8)

Avantages:

- More precise positioning of the instruments (assuming that an accurate registration is performed)
- More accurate trajectory tracking
- Tremor filtering
- Weight compensation

Disadvantages:

- Robot-patient registration is needed
- Increased duration of the procedure
- Larger and trained medical staff
- Cost
- Room
- Safety issues

I.2 State of the art (9)

B. Nineties:

- Second generation medical robots
 Robots especially designed to improved surgical gestures
- Robots dedicated architectures to manipulate the instrument
 - Better accuracy
 - Increased dexterity (more degrees of freedom)
 - Comanipulation (constrain of motions, gravity compensation, tremor filtering)
 - Teleoperation (long distance surgery, hostile environment, motion scaling)
- Main medical applications: othopedics, neurosurgery, radiology +
 - Minimally invasive surgery
 - Echography
 - Others

I.2 State of the art (10)

Minimally invasive surgery:

- Surgical intervention through multiple insertion points
- Endoscopic vision system

Indications

- Digestive surgery
- Gynecology
- Urology
- Cardiac surgery
- - ...

I.2 State of the art (11)

Avantages:

- Faster post-operative recovering
- Lesser risk of infections
- Reduced hospital stay and cost

Disadvantages:

- Tiring gesture for the surgeon
- Indirect vision without depth information (monovision)
- 4 DOF and inverted motions
- Lack of force sensing

I.2 State of the art (12)

Robotized MIS:

Endoscope holders:

AESOP (Computer Motion)

Endo-Assist (Armstrong-Healthcare)

Voice controlled

Head motion controlled

"The surgeon's third hand"

I.2 State of the art (13)

Teleoperated instruments holders

ZEUS (Computer Motion)

5 DOF instruments

I.2 State of the art (14)

DaVinci (Intuitive Surgical)

stereovision

6 DOF instruments

I.2 State of the art (15)

Robotized MIS:

Advantages:

- Confort of the surgeon
- Increased accuracy (tremor filtering, motion scaling)
- Increased dexterity (5 or 6 DOF instead of 4)
- One person less during the procedure
- Long distance surgery made possible (Linbergh operation performed by Pr. Marescaux in september 2001)

Disadvantages:

- The instrument needs to be in the line of sight
- No sensing of the contact with the organs
- Increased duration of the surgical procedure
- High cost (buying and maintenance)

I.2 State of the art (16)

Other applications:

- Tele echography:
 - The Ultrasound robot, Hippocrate, ...
- Radiologie interventionnelle:
 - RCM-Paky-Acubot/JHU

- Acrobot/(Imperial College et Acrobot Ltd)
- Neurosurgery:
 - Neurobot/(Imperial College)
- Others:
 - Dermarob, Probot /(Imperial College), Bloodbot/(Imperial College), ...

Acrobot

I.2 State of the art (17)

C. Today:

Third generation medical robots :

Robots especially designed to performed surgical or medical acts impossible otherwise

- Small light robots or miniaturized systems with dedicated architectures
 - Patient mounted robots
 - Physiological motion compensation
 - Robotized instruments
 - Small cost
- Main medical applications: no limitations
 - New surgical procedures: NOTES, SinglePort, ...

I.2 State of the art (18)

Patient mounted robots:

Orthopedics :

PIGalileo (Plus Orthopedics Switzerland)

Praxiteles, Grenoble

Interventional radiology:

MARS, Technion 2002

CT-Bot, Strasbourg

I.2 State of the art (19)

- Cardio-vascular:

Sensei Robotics Cathether System (Hansen Medical, USA)

I.3 Specific issues (1)

Safety

The robot is expected to create no injuries to the patient or the medical staff:

- Redundant sensors
- Workspace, velocity, force constrains
- Safe mechanical design
- Software, electronic and mechanical fuses
- Manual procedure remains possible
- Automatic docking
- Small relative increase of the duration of the surgery
- Surgeon in the loop
- Others

I.3 Specific issues (2)

Operating Room constrains

The OP Room constrains should be taken into account:

- Available space
- Human-machine interface and ergonomy
- Training of the medical staff
- Interoperability with other equipements
- Certification
- Others

I.3 Specific issues (3)

Sterility

Le robotic device should be compatible with the sterility procedures:

- The parts in contact with the patient should go into an autoclave or should be disposable or could go through a chemical cleansing
- The other part in the sterile area should be wrapped in sterile bags in order to avoid contamination of the medical staff performing the surgical act
- Others

I.4 Succesfull medical assistance (1)

Expected added-values of robots:

- Speed
- Accuracy
- Repeatability
- Automatic registration with pre-operative data
- Simulation
- Force, velocity and positioning constrains
- Augmented reality (visual, haptics, ...)
- Gravity compensation
- Scaling of motions and forces
- Telemanipulation
- Automatic planned trajectory tracking
- Hostile environment
- Real-time integration of intra-operative data
- Added dexterity
- Tremor filtering
- Recording of intra-operative data

I.5 Succesfull medical assistance (2)

Technological success is different from medical or commercial success

Conditions for success:

- 3 specific issues are taken into account: safety, sterility and OP room constrains
- Several competitive advantages of robot over human are realized
- The doctor is in the loop
- A significative improvement for the patient (validated through clinical trials)
- An advantageous trade-off between cost and benefit for the patient